Institute of Neuroscience

Are sleep and circadian rhythm associated with cognitive function in Bipolar Disorder?

Andrew Bradley

PhD Student Newcastle University
Clinical Research Scientist Eli Lilly

Cognitive function in bipolar disorder

- Patients often complain of cognitive impairments (e.g. memory, concentration).
- Objectively measured moderate deficits in attention, working memory, verbal memory, processing speed and executive functions.
- Impairment present in euthymic patients and cannot be entirely explained by residual mood symptoms, IQ, age or drug treatment.

Sleep is important to preserve cognitive, physical and emotional health

Sleep duration recommendations across the life span

Sleep depth, quality and timing are also important.

Sleep and cognitive function

- Our own experiences of the effects of poor sleep.
- Primary sleep disorders e.g. insomnia, sleep apnoea and circadian rhythm disorders and shift working are associated with objectively measured deficits in cognitive function.

Sleep deprivation and cognitive function

Effect sizes for impairment of cognitive function following short term SD (24-48 hours)

Largest effect on simple attention

Inter individual variability in the vulnerability to SD and SR

SD increases variability in performance

Simple attention is influenced by homeostatic and circadian sleep processes

The regulation of sleep and circadian rhythm

Homeostatic sleep system (Process S)

Circadian sleep system (Process C)

Sleep and circadian function in bipolar

disorder

- Sleep disturbances
- present throughout the illness
- variable
- Phase shifts in the timing of sleep- circadian rhythm disorder?
- primary sleep disorders such as sleep apnoea may be more prevalent in people with bipolar disorder.

Measuring the ASsociation between sleep and Cognitive function In Bipolar disorder ASCRIBE - Study Aims

- To examine the relationship between sleep variables and cognitive function, quality of life and psychosocial function in people with BD.
- To characterise sleeping patterns in BD patients and compare to healthy controls
- Measure the prevalence of sleep apnoea in people with bipolar disorder
- Measure core circadian function in people with bipolar disorder.

Hypothesis

- Performance on cognitive tasks will decline with increasingly abnormal sleep variables.
- Sleep variables will have a stronger relationship with cognitive function in bipolar patients than will mood symptoms.
- QoL and function will decline with increasingly abnormal sleep variables.

Study Design

	Field based assessment	- DSST
Healthy control	Wrist accelerometery (21 days)	- PVT - Spatial memory
	Sleep diary (21days)	- Verbal memory (immediate)
	Mood diary (21 days)	- ANT
BD I and II	PLMS assessment (3 nights)	- Digit span - Trails A \& B
(in any mood state)	2×48 hour urine collection (melatonin)	Verbal memory (delayed)
		- Facial expression recognition
		- Stroop Task (with EEG)
	21 days	

Recruitment

- Healthy volunteer database
- MRC ABC BDII cohort
- Local Psychiatric Services
- Regional Sleep Service
- Local BD support group

Visit 1 assessments

- Demographics - Age, Sex, BMI, employment, medication, smoking, alcohol, IQ
- Diagnosis and Axis I co-morbidities - Mini International Neuropsychiatric Interview
- Mood - Grid HAMD-17, BDI, YMRS, ASRM, STAI
- Function - Biological Rhythm Interview of Assessment in Neuropsychiatry (BRIAN), Function Assessment Short Test (FAST), QoL-BD
- Sleep and circadian preference - Pittsburgh Sleep Quality Index (PSQI) , Epworth Sleepiness Scale (ESS), Morningness/eveningness scale.

Accelerometery

GENEActiv accelerometer

- waterproof
- measures acceleration in three axes
- contains an inbuilt light meter.
- Visual actigram
- Sleep and movement related estimates.
- Total sleep time, sleep onset latency, sleep efficiency
- Total sustained inactivity and physical activity.
- Relative amplitude between day and night activity.

Sleep phenotypes can be described from these outputs.

- Short sleeper < 6 hours per night
- Long sleeper > 10 hours per night
- Circadian disturbances
- Phase shift > 2hours
- Irregular sleeper

Core circadian rhythm

- The onset of the melatonin secretion rhythm is considered an accurate measure of circadian timing.
- 2×48 hour urine samples collected 14 days apart to measure levels of 6-sulphatoxymelatonin (aMT6S) - a metabolite of melatonin.
- Core circadian rhythm timing can be overlayed onto sleep onset timing and the relationship examined.

Newcastle University

Participants

	Bipolar Disorder (n=46)	Controls ($\mathrm{n}=42$)
Male	$15(33 \%)$	$13(31 \%)$
Female	$31(67 \%)$	$29(69 \%)$

■ Bipolar Disorder ■ Controls

Mood, function and QoL

HAM-17 = 17 item Hamilton depression rating scale, ASRMS = Altman Self Rating Mania Scale, BRIAN = Biological Rhythm Interview of Assessment in Neuropsychiatry, FAST = Functioning Assessment Short Test.

Sleep Apnoea

Mean score on AHI and ODI

Percentage of participants with AHI > 5

Baseline sleep measures

Circadian Preference

Sleep phenotypes

Nocturnal sleep period

	Normal Sleep >6 hrs <10hrs	Short (<6hrs)	Long (>10hrs)	Irregular
Control (n=42)				
Bipolar ($n=46$)				

Irregular sleepers may also be normal, short or long in terms of hours of nocturnal sleep

Normal Sleeper

Mean nocturnal sleep time 7 hours

Irregular sleeper

Mean nocturnal sleep time 6.1 hours

 …

 Affinar TM

Newcastle University

Long Sleeper

Short Sleeper

Mean nocturnal sleep 10.1 hours

Mean nocturnal sleep 5.6 hours

Whl
Wand

$$
\mathbf{m a x}
$$

м\$

$$
\begin{aligned}
& \text { What } 1 \text { I }
\end{aligned}
$$

Sleep phenotypes

Nocturnal sleep period

	Normal Sleep >6 hrs <10hrs	Short (<6hrs)	Long (>10hrs)	Irregular
Control $(\mathrm{n}=42)$	39	3	0	2
Bipolar $(\mathrm{n}=46)$	40	4	2	8

Irregular sleepers may also be normal, short or long in terms of hours of nocturnal sleep

Accelerometer measured sleep

Accelerometer recorded movement

\square Bipolar Disorder \quad Control

Relative amplitude between day and night activity

Control

University

Association between sleep and cognitive function

Next Steps

- Compare groups on cognitive function
- significant deficits in simple attention already identified.
- Examine data for associations between sleep and cognitive function.
- Total sleep time
- Sleep phenotypes
- Circadian disorders
- Examine data for associations with physical activity
- BMI
- Mood
- Function
- QoL

Acknowledgements

- Dr Hamish McAllister-Williams
- Dr Kirstie Anderson
- Dr Peter Gallagher
- Dr Ahuja
- Dr Insole
- Dr Nunes
- Numerous MRES students

Thank you for listening

